<u>Leahy</u>, <u>Sister Mary Gerald C.S.J.</u> Mount St. Mary's College. Egg deposition in <u>D. melanogaster</u> increased by transplant of male paragonia.

Mated females of \underline{D} . $\underline{melanogaster}$ (Canton-S) have a higher oviposition rate than virgins. Both the sperm and paragonial fluid which the female receives at mating are possible sources of a stimulant for oviposition. The relative effect of the two materials was

therefore in question. The answer was determined by transplant of each substance into the thorax of two day old virgin females.

The glands and testes were removed into insect saline. A virgin female was etherized, an incision made into the pleural region of the thorax and a single gland inserted. Sections of testis, approximate in size to the gland were transplanted into other virgins. The paragonia and testes were obtained from males which were three days old and had been separated from females for two days. After the operation the flies were placed in individual containers which had media with lamp black. Egg count was made four days after transplant.

A striking rise in egg deposition followed transplant of paragonia. Figure 1 is a summary of five experiments which gave significant evidence that these glands provide an

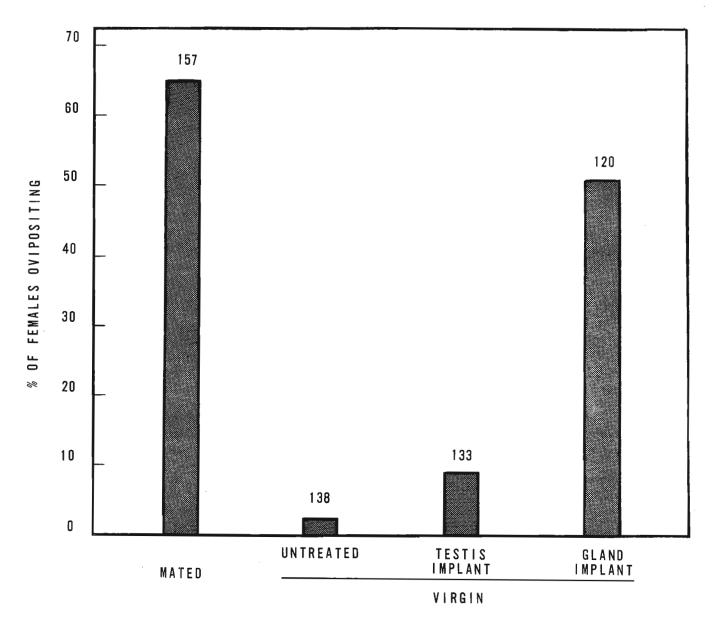


Fig. 1.— Oviposition in females of Drosophila melanogaster.

oviposition stimulant received by the female at mating. An average of 11% of the virgin females oviposited when testes were transplanted, whereas an average of 52% oviposited after paragonia transplant.

Non-specific activity of the paragonial substance is indicated in our current investigation of other Diptera. Chemical study of paragonia extract is in progress. Supported by Grants GB-108 and GB-3188 from the National Science Foundation.

Röhrborn, G. Institut für Anthropologie und Humangenetik, Heidelberg, Germany. The mutagenicity of phenyl-N-lostderivatives.

A number of bifunctional chloroethyleneimines with different basal constitution have been tested on their mutagenic activity on the Berlin wild stock of Drosophila melanogaster by means of the Basc method in successive three-day brood

periods. The drugs were applied orally.

The test substances were of the type R- CH₂CH₂Cl, R being the symbol for different substituents.

The mutagenic activity of the compounds tested declined in the following order of substituents (R): NH2>H>OCH2~CHO>C1 = control. The differences in mutation rates were in part restricted to single broods. There was no strict correlation between chemical reactivity and mutagenicity (table 1). The mutation rates increased with prolongation of the feeding period. The mutagenic action of C.B. 1077 (R = CHO; very low reactive) demonstrates that chemical reactivity tests alone are not suitable for predicting whether an alkylating drug is mutagenic or not. The most toxic compound was C.B. 1074, a substance with only a low reactivity. The most effective sterilizing and mutagenic compound was C.B. 1128. The mutagenic action of C.B. 1128 could be depressed by administering 1-cysteine simultaneously.

Table 1. The mutagenicity of p-N-bis-(8-chloroethyl)-anilines of the type R- \sim -N CH₂CH₂Cl CH₂Cl CH₂CH₂Cl

SUBSTI	TUENT		n lethals / n brood I	test chromosome	es = % lethals III	Totals	reactivity
			a) dose: 10 ⁻²				
R=NH ₂	(C.B.	11 28)	test-o'o' sterile				very high
R=H		1074)		utely			low
		1045)		3/585=0.51%		18/1763=1.0%	high
		1077)		3/242=1.2%		10/ 998=1.0%	very low
		1053)	-/1 92 = 0.00%	-/1 56=0.00%		1/ 607=0.16%	very low
			3				
				M; feeding per	iod: 3 days		
		11 28)	35/943=3.7%	18/816=2.2%		62/2550=2.4%	very high
R=H 2	(C.B.	1074)	abs o 1	utely	toxic		1ow
			a) dosa: 10 ⁻²	M; feeding per	iod · 1 day		
R=NH ₂	(C B	1128)	12/361=3.3%	1/306=0.33%	5/269=1.9%	18/ 936=1.9%	very high
		1074)	8/724=1.1%	6/727=0.83%	5/441=1.1%	19/1892=1.0%	low
		1045)	3/350=0.86%	-/ 369=0.00%	-/ 333=0.00%	3/1052=0.29%	high
		1077)	4/756=0.53%	1/651=0.15%	1/575=0.35%	7/1982=0.36%	very low
		1053)	1/690=0.14%	-/481=0.00%	-/ 343=0.00%	1/1511=0.07%	very low